Pink Noise of Ionic Conductance through Single Artificial Nanopores Revisited
نویسندگان
چکیده
منابع مشابه
Pink noise of ionic conductance through single artificial nanopores revisited.
We report voltage-clamp measurements through single conical nanopore obtained by chemical etching of a single ion track in polyimide film. Special attention is paid to the pink noise of the ionic current (i.e., 1/f noise) measured with different filling liquids. The relative pink-noise amplitude is almost independent of concentration and pH for KCl solutions, but varies strongly using ionic liq...
متن کاملQuantized ionic conductance in nanopores.
Ionic transport in nanopores is a fundamentally and technologically important problem in view of its occurrence in biological processes and its impact on novel DNA sequencing applications. Using molecular dynamics simulations we show that ion transport may exhibit strong nonlinearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transv...
متن کاملDehydration and ionic conductance quantization in nanopores.
There has been tremendous experimental progress in the last decade in identifying the structure and function of biological pores (ion channels) and fabricating synthetic pores. Despite this progress, many questions still remain about the mechanisms and universal features of ionic transport in these systems. In this paper, we examine the use of nanopores to probe ion transport and to construct f...
متن کاملDNA translocation through low-noise glass nanopores.
The effect of electron irradiation-induced shrinking on glass nanocapillaries with diameters ranging from 75 to 14 nm was analyzed by measuring the conductance characteristics with and without DNA translocation. We have investigated nanocapillary shrinking with a scanning electron microscope from several perspectives to understand the geometry of the shrunken nanocapillary. On the basis of this...
متن کاملModel of ionic currents through microtubule nanopores and the lumen.
It has been suggested that microtubules and other cytoskeletal filaments may act as electrical transmission lines. An electrical circuit model of the microtubule is constructed incorporating features of its cylindrical structure with nanopores in its walls. This model is used to study how ionic conductance along the lumen is affected by flux through the nanopores, both with and without an exter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2010
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.105.260602